1. Market Research
  2. > Energy & Environment
  3. > Energy
  4. > Oil and Gas Energy Market Trends
  5. > Emerging Membrane Technologies for Gas Separation (TechVision) 

Emerging Membrane Technologies for Gas Separation (TechVision) 

  • February 2016
  • -
  • Frost & Sullivan
  • -
  • 57 pages

Emerging Membrane Technologies for Gas Separation (TechVision) : Analysis of Emerging Materials for Natural Gas Upgrading

The industrial gas separation technologies that are currently used for processing natural gas, such as cryogenic distillation, and pressure swing adsorption, often require a large amount of energy. Conversely, membrane technologies have attracted much interest in the gas separation industry as a cost-effective, robust, and energy saving alternative to conventional technologies. With recent attention towards the production of natural gas, membranes have gained prominence as one of the most efficient technologies to process the gas streams to supply to consumers as a viable energy source.

However, at present gas separation membrane technologies are still in the development process and need to address several critical challenges before being adopted on the large scale. Developing efficient and economical gas separation membrane technologies to replace conventional separation processes is a prime focus area for both research institutes and technology developers. This research service titled "Emerging Membrane Technologies for Gas Separation (TechVision)" focuses on recent innovations and developments with regard to membrane technologies used for various natural gas processing applications.

This research service includes a holistic analysis of the various membrane materials, which includes their technical capabilities, market potential, and industry requirements. In addition, the technology limitation factors affecting the adoption of membranes for various natural gas processing applications analyzed, key opportunity areas identified, and insights provided on the road ahead for technology developers in this space. The scope of the research service is limited only to natural gas processing applications, and does not include opportunities for using membrane technologies for air separation and biogas processing.

The membrane materials considered are segmented on the basis of type, such as organic polymeric membranes, inorganic membranes, and mixed matrix membranes (MMMs). Inorganic membranes are further segmented into zeolite membranes and carbon molecular sieve (CMS). Metal and ceramic membranes are not considered within the scope of this research.

Key Findings

Gas separation membrane technologies are currently in an emerging phase of development, and have shown wide potential for being adopted for processing natural gas streams on the industrial scale. The membrane technologies have significant advantages over conventional gas separation technologies, owing to the small occupied footprint, energy savings, simple operation requirement, low capital and operation costs, and ability to be integrated into existing infrastructure.

At present, polymeric membranes have achieved significant adoption for natural gas separation applications, with many stakeholders involved in the development of these membrane materials. Inorganic membranes, such as zeolite membranes and carbon molecular sieve (CMS) membranes have also been identified as potential alternatives to polymeric membranes due to their resistance to impurities in gas streams, and high selectivity and permeability properties.

As researchers are focusing on fabricating cost-effective inorganic membranes, mixed matrix membranes (MMMs) are fast emerging as the most practical alternative membrane technologies. These membranes combine the advantageous inherent properties of both organic and inorganic membrane materials, by being both easy to process and highly stable in challenging environments. The research focus for MMMs is focused toward tailoring separation permeability and selectivity required.

Major gas separation membrane developers are concentrated in the USA, Canada, and Middle East owing to the presence of many tier 1 and tier 2 companies and significant natural gas operations in these regions. Several government agencies are funding research initiatives on the technology in these regions, with the focus being on developing novel membrane materials at an economical cost. While the technology development intensity is high in Europe, the rate of technology adoption is low.

End-users of the technology require the membrane materials to be cost-effective in fabrication and able to endure high flow rates. However, inorganic membranes are challenging to manufacture at low costs, demanding more research initiatives on this requirement. Larger membrane modules are increasingly being developed for processing high-pressure flammable gases. The development of membranes that do not require high cost pre-treatment processes is an area of wide interest.

Future trends for membrane materials is expected to be geared toward developing performance tuned membrane materials that can handle gas flow rates that vary with time, and hybrid membranes made of polymeric materials combined with fluorine or clay. While nanoporous and nanocomposite-based membrane materials are at present in nascent stages of development, they are expected to gain significant research and development traction due to their ultrahigh permeability and selectivity properties.

Table Of Contents

Emerging Membrane Technologies for Gas Separation (TechVision) 
1EXECUTIVE SUMMARY

Executive Summary
1. Research Scope
2. Research Process and Methodology
3. Key Findings

2TECHNOLOGY SNAPSHOT

Technology Snapshot
1. Overview of Membrane Technologies for Gas Separation
2. Key Applications in Natural Gas Processing
3. Technology Value Chain
4. Technology Value Chain

3TECHNOLOGY CAPABILITY

Technology Capability
1. Types of Gas Separation Membranes-Materials Perspective
2. Polymeric Membranes
3. Polymeric Membranes
4. Zeolite Membranes
5. Zeolite Membranes
6. Carbon Molecular Sieve Membranes
7. Carbon Molecular Sieve Membranes
8. Mixed Matrix Membranes
9. Mixed Matrix Membranes

4IMPACT ASSESSMENT AND ANALYSIS

Impact Assessment and Analysis
1. Market Impact of Technology Accelerators
2. Market Impact of Technology Challenges
3. Stakeholder Initiatives to Address Technology Challenges

5DIFFUSION OF INNOVATIONS AND NEEDS ASSESSMENT

Diffusion of Innovations and Needs Assessment
1. Global Technology Development Footprint
2. Global Technology Adoption Footprint
3. Demand Side Analysis-End-User Requirements
4. Ongoing Stakeholder Initiatives to Address End-User Requirements

6OPPORTUNITY EVALUATION AND ROADMAPPING

Opportunity Evaluation and Roadmapping
1. Opportunity Strategy Evaluation
2. Technology Roadmap
3. Technology Roadmap

7KEY PATENTS

Key Patents
1. Key Patents
2. Key Patents
3. Key Patents
4. Key Patents

8KEY CONTACTS

Key Contacts
1. Key Contacts

9APPENDIX

Appendix
1. Appendix A: Opportunity Strategy Evaluation
2. Appendix A: Opportunity Strategy Evaluation
3. Appendix A: Opportunity Strategy Evaluation
4. Legal Disclaimer

10THE FROST and SULLIVAN STORY

The Frost and Sullivan Story
1. The Frost and Sullivan Story
2. Value Proposition: Future of Your Company and Career
3. Global Perspective
4. Industry Convergence
5. 360º Research Perspective
6. Implementation Excellence
7. Our Blue Ocean Strategy

View This Report »

Get Industry Insights. Simply.

  • Latest reports & slideshows with insights from top research analysts
  • 24 Million searchable statistics with tables, figures & datasets
  • More than 10,000 trusted sources
24/7 Customer Support

Talk to Veronica

+1 718 514 2762

Purchase Reports From Reputable Market Research Publishers
Gas Detection Equipment Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016 - 2024

Gas Detection Equipment Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016 - 2024

  • $ 5795
  • Industry report
  • October 2016
  • by Transparency Market Research

Gas Detection Equipment Market: Scope and Methodology This report on the global gas detection equipment market provides analysis both in terms of value and shipment for the period from 2014 to 2024, wherein ...

Environmental Remediation Market by Environmental Medium (Soil & Groundwater), Technology (Bioremediation, Pump & Treat, Soil Vapor Extraction, Thermal Treatment, Soil Washing), Application, and Geography - Global Forecast to 2022

Environmental Remediation Market by Environmental Medium (Soil & Groundwater), Technology (Bioremediation, Pump & Treat, Soil Vapor Extraction, Thermal Treatment, Soil Washing), Application, and Geography - Global Forecast to 2022

  • $ 5650
  • Industry report
  • October 2016
  • by MarketsandMarkets

“Environmental remediation market to grow at a high CAGR of 7.62% between 2016 and 2022” The environmental remediation market is expected to reach USD 123.13 billion by 2022, at a CAGR of 7.62% between ...


ref:plp2016

Reportlinker.com © Copyright 2016. All rights reserved.

ReportLinker simplifies how Analysts and Decision Makers get industry data for their business.