1. Market Research
  2. > Healthcare
  3. > Diagnostics Market Trends
The 2020-2025 World Outlook for Analytical and Scientific Instruments Excluding Optical Instruments

The 2020-2025 World Outlook for Analytical and Scientific Instruments Excluding Optical Instruments

  • January 2019
  • 287 pages
  • ID: 1988277
  • Format: PDF
  • By ICON Group

Summary

Table of Contents

This study covers the world outlook for analytical and scientific instruments excluding optical instruments across more than 190 countries. For each year reported, estimates are given for the latent demand, or potential industry earnings (P.I.E.), for the country in question (in millions of U.S. dollars), the percent share the country is of the region, and of the globe.

These comparative benchmarks allow the reader to quickly gauge a country vis-à-vis others. Using econometric models which project fundamental economic dynamics within each country and across countries, latent demand estimates are created.

This report does not discuss the specific players in the market serving the latent demand, nor specific details at the product level. The study also does not consider short-term cyclicalities that might affect realized sales. The study, therefore, is strategic in nature, taking an aggregate and long-run view, irrespective of the players or products involved. This study does not report actual sales data (which are simply unavailable, in a comparable or consistent manner in virtually all of the countries of the world). This study gives, however, my estimates for the worldwide latent demand, or the P.I.E., for analytical and scientific instruments excluding optical instruments. It also shows how the P.I.E. is divided across the world’s regional and national markets. For each country, I also show my estimates of how the P.I.E. grows over time (positive or negative growth). In order to make these estimates, a multi-stage methodology was employed that is often taught in courses on international strategic planning at graduate schools of business.

This study covers the world outlook for analytical and scientific instruments excluding optical instruments across more than 190 countries. For each year reported, estimates are given for the latent demand, or potential industry earnings (P.I.E.), for the country in question (in millions of U.S. dollars), the percent share the country is of the region, and of the globe. These comparative benchmarks allow the reader to quickly gauge a country vis-à-vis others. Using econometric models which project fundamental economic dynamics within each country and across countries, latent demand estimates are created. This report does not discuss the specific players in the market serving the latent demand, nor specific details at the product level. The study also does not consider short-term cyclicalities that might affect realized sales. The study, therefore, is strategic in nature, taking an aggregate and long-run view, irrespective of the players or products involved. This study does not report actual sales data (which are simply unavailable, in a comparable or consistent manner in virtually all of the countries of the world). This study gives, however, my estimates for the worldwide latent demand, or the P.I.E., for analytical and scientific instruments excluding optical instruments. It also shows how the P.I.E. is divided across the world’s regional and national markets. For each country, I also show my estimates of how the P.I.E. grows over time (positive or negative growth). In order to make these estimates, a multi-stage methodology was employed that is often taught in courses on international strategic planning at graduate schools of business.

1.3 THE METHODOLOGY
In order to estimate the latent demand for analytical and scientific instruments excluding optical instruments on a worldwide basis, I used a multi-stage approach. Before applying the approach, one needs a basic theory from which such estimates are created.

In this case, I heavily rely on the use of certain basic economic assumptions. In particular, there is an assumption governing the shape and type of aggregate latent demand functions.

Latent demand functions relate the income of a country, city, state, household, or individual to realized consumption. Latent demand (often realized as consumption when an industry is efficient), at any level of the value chain, takes place if an equilibrium is realized.

For firms to serve a market, they must perceive a latent demand and be able to serve that demand at a minimal return. The single most important variable determining consumption, assuming latent demand exists, is income (or other financial resources at higher levels of the value chain). Other factors that can pivot or shape demand curves include external or exogenous shocks (i.e., business cycles), and or changes in utility for the product in question.

Ignoring, for the moment, exogenous shocks and variations in utility across countries, the aggregate relation between income and consumption has been a central theme in economics. The figure below concisely summarizes one aspect of problem.

In the 1930s, John Meynard Keynes conjectured that as incomes rise, the average propensity to consume would fall. The average propensity to consume is the level of consumption divided by the level of income, or the slope of the line from the origin to the consumption function.

He estimated this relationship empirically and found it to be true in the short-run (mostly based on cross-sectional data). The higher the income, the lower the average propensity to consume.

This type of consumption function is shown as "B" in the figure below (note the rather flat slope of the curve). In the 1940s, another macroeconomist, Simon Kuznets, estimated long-run consumption functions which indicated that the marginal propensity to consume was rather constant (using time series data across countries). This type of consumption function is show as "B" in the figure below (note the higher slope and zero-zero intercept).

The average propensity to consume is constant. For a general overview of this subject area, see Principles of Macroeconomics by N.

Gregory Mankiw, South-Western College Publishing; ISBN: 0030340594; 2nd edition (February 2002).

Is it declining or is it constant? A number of other economists, notably Franco Modigliani and Milton Friedman, in the 1950s (and Irving Fisher earlier), explained why the two functions were different using various assumptions on intertemporal budget constraints, savings, and wealth. The shorter the time horizon, the more consumption can depend on wealth (earned in previous years) and business cycles.

In the long-run, however, the propensity to consume is more constant. Similarly, in the long-run, households, industries, or countries with no income eventually have no consumption (wealth is depleted).

While the debate surrounding beliefs about how income and consumption are related and interesting, in this study a very particular school of thought is adopted. In particular, we are considering the latent demand for analytical and scientific instruments excluding optical instruments across some 190 countries.

The smallest have fewer than 10,000 inhabitants. I assume that all of these counties fall along a "long-run" aggregate consumption function. This long-run function applies despite some of these countries having wealth; current income dominates the latent demand for analytical and scientific instruments excluding optical instruments. So, latent demand in the long-run has a zero intercept. However, I allow firms to have different propensities to consume (including being on consumption functions with differing slopes, which can account for differences in industrial organization, and end-user preferences).

Given this overriding philosophy, I will now describe the methodology used to create the latent demand estimates for analytical and scientific instruments excluding optical instruments. Since ICON Group has asked me to apply this methodology to a large number of categories, the rather academic discussion below is general and can be applied to a wide variety of categories, not just analytical and scientific instruments excluding optical instruments.

1.3.1 STEP 1. PRODUCT DEFINITION AND DATA COLLECTION
Any study of latent demand across countries requires that some standard be established to define "efficiently served". Having implemented various alternatives and matched these with market outcomes, I have found that the optimal approach is to assume that certain key countries are more likely to be at or near efficiency than others.

These countries are given greater weight than others in the estimation of latent demand compared to other countries for which no known data are available. Of the many alternatives, I have found the assumption that the world’s highest aggregate income and highest income-per-capita markets reflect the best standards for "efficiency".

High aggregate income alone is not sufficient (i.e., China has high aggregate income, but low income per capita and cannot be assumed to be efficient). Aggregate income can be operationalized in a number of ways, including gross domestic product (for industrial categories), or total disposable income (for household categories; population times average income per capita, or number of households times average household income per capita). Brunei, Nauru, Kuwait, and Lichtenstein are examples of countries with high income per capita, but not assumed to be efficient, given low aggregate level of income (or gross domestic product); these countries have, however, high incomes per capita but may not benefit from the efficiencies derived from economies of scale associated with large economies. Only countries with high income per capita and large aggregate income are assumed efficient. This greatly restricts the pool of countries to those in the OECD (Organization for Economic Cooperation and Development), like the United States, or the United Kingdom (which were earlier than other large OECD economies to liberalize their markets).

The selection of countries is further reduced by the fact that not all countries in the OECD report have industry revenues at the category level. Countries that typically have ample data at the aggregate level that meet the efficiency criteria include the United States, the United Kingdom, and in some cases France and Germany.

Is it declining or is it constant? A number of other economists, notably Franco Modigliani and Milton Friedman, in the 1950s (and Irving Fisher earlier), explained why the two functions were different using various assumptions on intertemporal budget constraints, savings, and wealth. The shorter the time horizon, the more consumption can depend on wealth (earned in previous years) and business cycles.

In the long-run, however, the propensity to consume is more constant. Similarly, in the long-run, households, industries, or countries with no income eventually have no consumption (wealth is depleted).

While the debate surrounding beliefs about how income and consumption are related and interesting, in this study a very particular school of thought is adopted. In particular, we are considering the latent demand for analytical and scientific instruments excluding optical instruments across some 190 countries.

The smallest have fewer than 10,000 inhabitants. I assume that all of these counties fall along a "long-run" aggregate consumption function. This long-run function applies despite some of these countries having wealth; current income dominates the latent demand for analytical and scientific instruments excluding optical instruments. So, latent demand in the long-run has a zero intercept. However, I allow firms to have different propensities to consume (including being on consumption functions with differing slopes, which can account for differences in industrial organization, and end-user preferences).

Given this overriding philosophy, I will now describe the methodology used to create the latent demand estimates for analytical and scientific instruments excluding optical instruments. Since ICON Group has asked me to apply this methodology to a large number of categories, the rather academic discussion below is general and can be applied to a wide variety of categories, not just analytical and scientific instruments excluding optical instruments.

1.3.1 STEP 1. PRODUCT DEFINITION AND DATA COLLECTION
Any study of latent demand across countries requires that some standard be established to define "efficiently served". Having implemented various alternatives and matched these with market outcomes, I have found that the optimal approach is to assume that certain key countries are more likely to be at or near efficiency than others.

These countries are given greater weight than others in the estimation of latent demand compared to other countries for which no known data are available. Of the many alternatives, I have found the assumption that the world’s highest aggregate income and highest income-per-capita markets reflect the best standards for "efficiency".

High aggregate income alone is not sufficient (i.e., China has high aggregate income, but low income per capita and cannot be assumed to be efficient). Aggregate income can be operationalized in a number of ways, including gross domestic product (for industrial categories), or total disposable income (for household categories; population times average income per capita, or number of households times average household income per capita). Brunei, Nauru, Kuwait, and Lichtenstein are examples of countries with high income per capita, but not assumed to be efficient, given low aggregate level of income (or gross domestic product); these countries have, however, high incomes per capita but may not benefit from the efficiencies derived from economies of scale associated with large economies. Only countries with high income per capita and large aggregate income are assumed efficient. This greatly restricts the pool of countries to those in the OECD (Organization for Economic Cooperation and Development), like the United States, or the United Kingdom (which were earlier than other large OECD economies to liberalize their markets).

The selection of countries is further reduced by the fact that not all countries in the OECD report have industry revenues at the category level. Countries that typically have ample data at the aggregate level that meet the efficiency criteria include the United States, the United Kingdom, and in some cases France and Germany.

Latent demand is therefore estimated using data collected for relatively efficient markets from independent data sources (e.g. Euromonitor, Mintel, Thomson Financial Services, the U.S. Industrial Outlook, the World Resources Institute, the Organization for Economic Cooperation and Development, various agencies from the United Nations, industry trade associations, the International Monetary Fund, and the World Bank). Depending on original data sources used, the definition of analytical and scientific instruments excluding optical instruments is established. In the case of this report, the data were reported at the aggregate level, with no further breakdown or definition. In other words, any potential products and/or services that might be incorporated within analytical and scientific instruments excluding optical instruments fall under this category. Public sources rarely report data at the disaggregated level in order to protect private information from individual firms that might dominate a specific product-market. These sources will therefore aggregate across components of a category and report only the aggregate to the public. While private data are certainly available, this report only relies on public data at the aggregate level without reliance on the summation of various category components. In other words, this report does not aggregate a number of components to arrive at the "whole". Rather, it starts with the "whole", and estimates the whole for all countries and the world at large (without needing to know the specific parts that went into the whole in the first place).

Given this caveat, this study covers analytical and scientific instruments excluding optical instruments as defined by the North American Industrial Classification system or NAICS (pronounced "nakes").

The NAICS code for analytical and scientific instruments excluding optical instruments is 3345160. It is for this definition that aggregate latent demand estimates are derived.

Analytical and scientific instruments excluding optical instruments is specifically defined as follows:
3345160 ANALYTICAL AND SCIENTIFIC INSTRUMENTS, EXCEPT OPTICAL

33451600 Analytical and scientific instruments, except optical

3345160000 Analytical and scientific instruments, except optical

3345160001 Electrochemical Ph electrodes and meters

3345160003 Electrochemical ion selective electrodes and meters

3345160007 Electrochemical, electrophoresis instruments

3345160009 Other electrochemical instruments (except process type), including photometers

3345160011 Gas chromatographic instruments

3345160013 Liquid chromatographic instruments

3345160015 Other chromatographic instruments, including paper, gel, and thin layer

3345160017 Spectrophotometric atomic absorption instruments

3345160019 Spectrophotometric optical emission instruments, excluding ICP

3345160021 Spectrophotometric optical emission instruments, including laser excited source

3345160023 Spectrophotometric optical emission instruments with inductively coupled plasma, ICP

3345160025 Infrared spectrophotometric instruments, including Fourier transfer methods

3345160027 Ultraviolet, visible, and colorimeters spectrophotometric instruments

3345160029 Fluorescent spectrophotometric instruments, including fluorometers, excluding chemical

3345160031 Spectrophotometric color measuring devices

3345160033 Other spectrophotometric instruments, including vacuum ultraviolet, Raman, light scattering reflectors, helium glow, and light measuring

3345160035 Thermal analysis instruments

3345160037 Nuclear magnetic resonance spectrometers, excluding medical

3345160039 Microscopes, scanning type, including electron and proton

3345160041 Particle beam excitation instruments

3345160043 Photon excitation analyzers

3345160045 Mass spectroscopy instrumentation

3345160047 Clinical chemistry laboratory instrumentation

3345160049 Clinical hematology laboratory instrumentation

3345160051 Clinical microbiology laboratory instrumentation

3345160053 Clinical histology laboratory instrumentation

3345160055 Clinical blood bank and immunology laboratory instrumentation

3345160057 Other clinical laboratory instrumentation, nec

3345160059 Organic elemental analysis instruments

3345160061 Amino acid, protein and~or peptide analyzers, including chromatographic type

3345160063 Gas detectors

3345160065 Other analytical and scientific instruments, nec

3345160067 Parts, components, and accessories for analytical and scientific instruments (sold separately)

33451601 Analytical and scientific instruments, except optical

3345160100 Analytical and scientific instruments, except optical

3345160101 Electrochemical instruments, Ph electrodes and meters

3345160103 Electrochemical instruments, ion selective electrodes and meters

3345160107 Electrochemical instruments, electrophoresis instruments

3345160109 Other electrochemical instruments (except process type), including photometers

3345160112 Chromatographic instruments (including gas, liquid, paper, gel, and thin layer)

3345160117 Spectrophotometric instruments, atomic absorption

3345160119 Spectrophotometric instruments, optical emission (spark, arc, glow, spectrographs, etc.), excluding inductively coupled plasma (ICP)

3345160121 Spectrophotometric instruments, optical emission, including laser excited source (including laser microprobe source emission, laser source Raman, and laser microprobe source Raman spectrometers)

3345160123 Spectrophotometric instruments, optical emission with ICP

3345160125 Spectrophotometric instruments, infrared (including Fourier transfer methods)

3345160127 Spectrophotometric instruments, ultraviolet, visible and colorimeters

3345160129 Spectrophotometric instruments, fluorescent instruments, including fluorometers (except chemicals)

3345160131 Spectrophotometric instruments, color measuring devices

3345160133 Spectrophotometric instruments, other (including vacuum ultraviolet, Raman light scattering reflectors helium glow, and light measuring)

3345160135 Thermal analysis instruments, thermogravimetric analyzers (THA), differential thermal analyzers (DTA), and quantitative thermal analyzers (QTA)

3345160137 Nuclear magnetic resonance (NMR) spectrometers (excluding medical NMR imaging equipment), electron paramagnetic spin types (EP) and other types

3345160139 Microscopes, scanning type, including electron and proton

3345160141 Particle beam excitation instruments (including electron microprobes, ion microprobes, auger, secondary ion mass spectrometers (SIMS), and energy ion spectroscopes)

3345160143 Photon excitation analyzers (including X-ray fluorescence - simultaneous, X-ray diffraction, and energy dispersive systems (EDS))

3345160145 Mass spectroscopy instrumentation, clinical laboratory

3345160147 Mass spectroscopy instrumentation, chemistry

3345160149 Mass spectroscopy instrumentation, hematology

3345160151 Mass spectroscopy instrumentation, microbiology

3345160153 Mass spectroscopy instrumentation, histology

3345160155 Mass spectroscopy instrumentation, blood bank and immunology

3345160157 Mass spectroscopy instrumentation, other

3345160159 Organic elemental analysis instruments (including carbon, hydrogen, nitrogen, oxygen, and sulphur)

3345160161 Amino acid, protein and/or peptide analyzers, including chromatographic types

3345160163 Gas detectors

3345160164 Analytical and scientific laser systems and equipment

3345160165 All other analytical and scientific instruments (molecular weight, monochrometers (analytical type), nephelometers (except meteorological), osmometers, particle size analyzers, etc.)

3345160167 Parts, components, and accessories for analytical and scientific instruments (photo tubes, thermal conductivity sensors, thermopiles, etc.) (sold separately)

This report was prepared from a variety of sources including excerpts from documents and official reports or databases published by the World Bank, the U.S. Department of Commerce, the U.S. State Department, various national agencies, the International Monetary Fund, the Central Intelligence Agency, various agencies from the United Nations (e.g. ILO, ITU, UNDP, etc.), and non-governmental sources, including ICON Group Ltd., Euromonitor, the World Resources Institute, Mintel, the U.S. Industrial Outlook, and various public sources cited in the trade press.

1.3.2 STEP 2. FILTERING AND SMOOTHING
Based on the aggregate view of analytical and scientific instruments excluding optical instruments as defined above, data were then collected for as many similar countries as possible for that same definition, at the same level of the value chain. This generates a convenience sample of countries from which comparable figures are available.

If the series in question do not reflect the same accounting period, then adjustments are made. In order to eliminate short-term effects of business cycles, the series are smoothed using a 2-year moving average weighting scheme (longer weighting schemes do not substantially change the results).

If data are available for a country, but these reflect short-run aberrations due to exogenous shocks (such as would be the case of beef sales in a country stricken with foot and mouth disease), these observations were dropped or "filtered" from the analysis.

1.3.3 STEP 3. FILLING IN MISSING VALUES
In some cases, data are available for countries on a sporadic basis. In other cases, data from a country may be available for only one year.

From a Bayesian perspective, these observations should be given the greatest weight in estimating missing years. Assuming that other factors are held constant, the missing years are extrapolated using changes and growth in aggregate national income.

Based on the overriding philosophy of a long-run consumption function (defined earlier), countries which have missing data for any given year are estimated based on historical dynamics of aggregate income for that country.

1.3.4 STEP 4. VARYING PARAMETER, NON-LINEAR ESTIMATION
Given the data available from the first three steps, the latent demand in additional countries is estimated using a "varying-parameter cross-sectionally pooled time series model".

The interested reader can find longer discussions of this type of modeling in Studies in Global Econometrics (Advanced Studies in Theoretical and Applied Econometrics V. 30), by Henri Theil, et al., Kluwer Academic Publishers; ISBN: 0792336607; (June 1996), and in Principles of Econometrics, by Henri Theil John Wiley & Sons; ISBN: 0471858455; (December 1971), and in Econometric Models and Economic Forecasts by Robert S. Pindyck, Daniel L. Rubinfeld McGraw Hill Text; ISBN: 0070500983; 3rd edition (December 1991). Simply stated, the effect of income on latent demand is assumed to be constant across countries unless there is empirical evidence to suggest that this effect varies (i.e., the slope of the income effect is not necessarily the same for all countries). This assumption applies across countries along the aggregate consumption function, but also over time (i.e., not all countries are perceived to have the same income growth prospects over time and this effect can vary from country to country as well). Another way of looking at this is to say that latent demand for analytical and scientific instruments excluding optical instruments is more likely to be similar across countries that have similar characteristics in terms of economic development (i.e., African countries will have similar latent demand structures controlling for the income variation across the pool of African countries). This approach is useful across countries for which some notion of non-linearity exists in the aggregate cross-country consumption function. For some categories, however, the reader must realize that the numbers will reflect a country’s contribution to global latent demand and may never be realized in the form of local sales. For certain country-category combinations this will result in what at first glance will be odd results. For example, the latent demand for the category "space vehicles" will exist for Togo even though they have no space program. The assumption is that if the economies in these countries did not exist, the world aggregate for these categories would be lower. The share attributed to these countries is based on a proportion of their income (however small) being used to consume the category in question (i.e., perhaps via resellers).

1.3.5 STEP 5. FIXED-PARAMETER LINEAR ESTIMATION
Nonlinearities are assumed in cases where filtered data exist along the aggregate consumption function. Because the world consists of more than 200 countries, there will always be those countries, especially toward the bottom of the consumption function, where non-linear estimation is simply not possible.

For these countries, equilibrium latent demand is assumed to be perfectly parametric and not a function of wealth (i.e., a country’s stock of income), but a function of current income (a country’s flow of income). In the long run, if a country has no current income, the latent demand for analytical and scientific instruments excluding optical instruments is assumed to approach zero. The assumption is that wealth stocks fall rapidly to zero if flow income falls to zero (i.e., countries which earn low levels of income will not use their savings, in the long run, to demand analytical and scientific instruments excluding optical instruments). In a graphical sense, for low-income countries, latent demand approaches zero in a parametric linear fashion with a zero-zero intercept. In this stage of the estimation procedure, low-income countries are assumed to have a latent demand proportional to their income, based on the country closest to it on the aggregate consumption function.

1.3.6 STEP 6. AGGREGATION AND BENCHMARKING
Based on the models described in Chapter 1, latent demand figures are estimated for all countries of the world, including for the smallest economies. These are then aggregated to get world totals and regional totals.

To make the numbers more meaningful, regional and global demand averages are presented. Figures are rounded, so minor inconsistencies may exist across tables.

1.3.7 STEP 7. LATENT DEMAND DENSITY: ALLOCATING ACROSS CITIES
With the advent of a "borderless world", cities become a more important criteria in prioritizing markets, as opposed to regions, continents, or countries. This report also covers the world’s top 2,000 cities.

The purpose is to understand the density of demand within a country and the extent to which a city might be used as a point of distribution within its region. From an economic perspective, however, a city does not represent a population within rigid geographical boundaries.

To an economist or strategic planner, a city represents an area of dominant influence over markets in adjacent areas. This influence varies from one industry to another, but also from one period of time to another.

Similar to country-level data, the reader needs to realize that latent demand allocated to a city may or may not represent real sales. For many items, latent demand is clearly observable in sales, as in the case for food or housing items.

Consider, again, the category "satellite launch vehicles." Clearly, there are no launch pads in most cities of the world. However, the core benefit of the vehicles (e.g. telecommunications, etc.) is "consumed" by residents or industries within the world’s cities. Without certain cities, in other words, the world market for satellite launch vehicles would be lower for the world in general. One needs to allocate, therefore, a portion of the worldwide economic demand for launch vehicles to regions, countries, and cities. This report takes the broader definition and considers, therefore, a city as a part of the global market. I allocate latent demand across areas of dominant influence based on the relative economic importance of cities within its home country, within its region, and across the world total. Not all cities are estimated within each country as demand may be allocated to adjacent areas of influence. Since some cities have higher economic wealth than others within the same country, a city’s population is not generally used to allocate latent demand. Rather, the level of economic activity of the city is used vis-à-vis others.

Get Industry Insights. Simply.

  • Latest reports & slideshows with insights from top research analysts
  • 150+ Million searchable statistics with tables, figures & datasets
  • More than 25,000 trusted sources
  • Single User License — provides access to the report by one individual.
  • Department License — allows you to share the report with up to 5 users
  • Site License — allows the report to be shared amongst all employees in a defined country
  • Corporate License — allows for complete access, globally.
Ahmad helps you find the right report:
Testimonials

The research specialist advised us on the best content for our needs and provided a great report and follow-up, thanks very much we shall look at ReportLinker in the future.

Kate Merrick

Global Marketing Manager at
Eurotherm by Schneider Electric

We were impressed with the support that ReportLinker’s research specialists’ team provided. The report we purchased was useful and provided exactly what we want.

Category Manager at
Ikea

ReportLinker gave access to reliable and useful data while avoiding dispersing resources and spending too much time on unnecessary research.

Executive Director at
PwC Advisory

The customer service was fast, responsive, and 100% professional in all my dealings (...) If we have more research needs, I'll certainly prioritize working with ReportLinker!

Scott Griffith

Vice President Marketing at
Maurice Sporting Goods

The research specialist provided prompt, helpful instructions for accessing ReportLinker's product. He also followed up to make sure everything went smoothly and to ensure an easy transition to the next stage of my research

Jessica P Huffman

Research Associate at
American Transportation Research Institute

Excellent customer service. Very responsive and fast.

Director, Corporate Strategy at
Ingredion

I reached out to ReportLinker for a detailed market study on the Air Treatment industry. The quality of the report, the research specialist’s willingness to solve my queries exceeded my expectations. I would definitely recommend ReportLinker for in-depth industry information.

Mariana Mendoza

Global Platform Senior Manager at
Whirlpool Corporation

Thanks! I like what you've provided and will certainly come back if I need to do further research works.

Bee Hin Png

CEO at
LDR Pte Ltd

The research specialist advised us on the best content for our needs and provided a great report and follow-up, thanks very much we shall look at ReportLinker in the future.

Kate Merrick

Global Marketing Manager at
Eurotherm by Schneider Electric

FAQ
  • How we can help
    • I am not sure if the report I am interested in will fulfill my needs. Can you help me?
    • Yes, of course. You can call us at +33(0) 4 37 65 17 03 or drop us an email at researchadvisor@reportlinker.com to let us know more about your requirements.
    • We buy reports often - can ReportLinker get me any benefits?
    • Yes. Set up a call with a Senior Research Advisor to learn more - researchadvisor@reportlinker.com or +33(0) 4 37 65 17 03.
    • I have had negative experiences with market research reports before. How can you avoid this from happening again?
    • We advise all clients to read the TOC and Summary and list your questions so that we can get more insight for you before you make any purchase decision. A research advisor will accompany you so that you can compare samples and reports from different sources, and choose the study that is right for you.

  • Report Delivery
    • How and when I will receive my Report?
    • Most reports are delivered right away in a pdf format, while others are accessed via a secure link and access codes. Do note that sometimes reports are sent within a 12 hour period, depending on the time zones. However, you can contact us to escalate this. Should you need a hard copy, you can check if this option is offered for the particular report, and pay the related fees.
  • Payment conditions
    • What payment methods do you accept?
      1. Credit card : VISA, American Express, Mastercard, or
      2. You can download an invoice to pay by wire transfer, check, or via a Purchase Order from your company, or
      3. You can pay via a Check made out in US Dollars, Euros, or British Pounds for the full amount made payable to ReportLinker
    • What are ReportLinker’s Payment Terms?
    • All payments must normally be submitted within 30 days. However, you can let us know if you need extended time.
    • Are Taxes and duties included?
    • All companies based in France must pay a 20% tax per report. The same applies to all individuals based in the EU. All EU companies must supply their VAT number when purchasing to avoid this charge.
    • I’m not satisfied. Can I be refunded?
    • No. Once your order has been processed and the publisher has received a notification to send you the report, we cannot issue any refund or cancel any order. As these are not ‘traditional’ products that can be returned, reports that are dispatched are considered to be ‘consumed’.
  • User license
    • The license that you should acquire depends on the number of persons that need to access the report. This can range from Single User (only one person will have the right to read or access the report), or Department License (up to 5 persons), to Site License (a group of persons based in the same company location), or Corporate License (the entire company personnel based worldwide). However, as publishers have different terms and conditions, we can look into this for you.
Purchase Reports From Reputable Market Research Publishers
Antibody Drug Conjugates Market (5th Edition), 2019-2030

Antibody Drug Conjugates Market (5th Edition), 2019-2030

  • $ 4499
  • August 2019

INTRODUCTIONWith six approved and marketed drugs, namely POLIVY™ (2019), LUMOXITI™ (2018), BESPONSA® (2017), MYLOTARG™ (2017, reapproval), KADCYLA® (2013) and ADCETRIS® (2011), antibody drug conjugates ...

Heparin Industry Forecasts - China Focus

Heparin Industry Forecasts - China Focus

  • $ 1800
  • October 2019

This study focuses on China’s Heparin industry forecasts.In the two past decades, the industry has been growing at a fast pace. The dramatic expansions of the manufacturing capabilities and rising consume ...

Animal Genetics Market by Solution and Geography - Forecast and Analysis 2020-2024

Animal Genetics Market by Solution and Geography - Forecast and Analysis 2020-2024

  • $ 2500
  • October 2019

Global Animal Genetics Market: About this marketThis animal genetics market analysis considers sales from live animal, genetic testing services, and genetic materials. Our report also provides a detailed ...


ref:plp2019

Reportlinker.com © Copyright 2019. All rights reserved.

ReportLinker simplifies how Analysts and Decision Makers get industry data for their business.

Make sure you don’t miss any news and follow us on