1. Home
  2. > ICT
  3. > Telecom
  4. > Internet Services
  5. > Broadband Market Trends
The Public Safety LTE & 5G Market: 2022 – 2030 – Opportunities, Challenges, Strategies & Forecasts

The Public Safety LTE & 5G Market: 2022 – 2030 – Opportunities, Challenges, Strategies & Forecasts

  • October 2022
  • 2319 pages
  • ID: 5903652
  • Format: PDF
  • SNS Telecom & IT

Summary

Table of Contents

With the commercial availability of 3GPP-standards compliant MCX (Mission-Critical PTT, Video & Data), HPUE (High-Power User Equipment), IOPS (Isolated Operation for Public Safety) and other critical communications features, LTE and 5G NR (New Radio) networks are increasingly gaining recognition as an all-inclusive public safety communications platform for the delivery of real-time video, high-resolution imagery, multimedia messaging, mobile office/field data applications, location services and mapping, situational awareness, unmanned asset control and other broadband capabilities, as well as MCPTT (Mission-Critical PTT) voice and narrowband data services provided by traditional LMR (Land Mobile Radio) systems.

Through ongoing refinements of additional standards – specifically 5G MBS (5G Multicast-Broadcast Services), 5G NR sidelink for off-network D2D (Device-to-Device) communications, NTN (Non-Terrestrial Network) integration, and support for lower 5G NR bandwidths – 3GPP networks are eventually expected to be in a position to fully replace legacy LMR systems by the mid-to-late 2020s. National public safety communications authorities in multiple countries have already expressed a willingness to complete their planned narrowband to broadband transitions within the second half of the 2020 decade.

A myriad of fully dedicated, hybrid government-commercial and secure MVNO/MOCN-based public safety LTE and 5G-ready networks are operational or in the process of being rolled out throughout the globe. In addition to the high-profile FirstNet (First Responder Network), South Korea’s Safe-Net (National Disaster Safety Communications Network) and Britain’s ESN (Emergency Services Network) nationwide public safety broadband projects, many additional national-level programs are making considerable headway in moving from field trials to wider scale deployments – most notably, France’s RRF (Radio Network of the Future), Spain’s SIRDEE mission-critical broadband network, Finland’s VIRVE 2.0 broadband service, Sweden’s Rakel G2 secure broadband system and Hungary’s EDR 2.0/3.0 broadband network. Nationwide initiatives in the pre-operational phase include but are not limited to Switzerland’s MSK (Secure Mobile Broadband Communications) system, Norway’s NGN (Next-Generation Nødnett), Germany’s planned hybrid broadband network for BOS (German Public Safety Organizations), Japan’s PS-LTE (Public Safety LTE) project, Australia’s PSMB (Public Safety Mobile Broadband) program and Canada’s national PSBN (Public Safety Broadband Network).

Other operational and planned deployments range from the Halton-Peel region PSBN in Canada’s Ontario province, China’s city and district-wide Band 45 (1.4 GHz) LTE networks for police forces, Royal Thai Police’s Band 26 (800 MHz) LTE network, Qatar MOI (Ministry of Interior), ROP (Royal Oman Police) and Nedaa’s mission-critical LTE networks in the oil-rich GCC (Gulf Cooperation Council) region, Brazil’s state-wide Band 28 (700 MHz) networks for both civil and military police agencies, Barbados’ Band 14 (700 MHz) LTE-based connectivity service platform, and Zambia’s 400 MHz broadband trunking system to local and regional-level private LTE networks for first responders in markets as diverse as Laos, Indonesia, the Philippines, Pakistan, Lebanon, Egypt, Kenya, Ghana, Cote D’Ivoire, Cameroon, Mali, Madagascar, Mauritius, Canary Islands, Spain, Italy, Turkey, Serbia, Argentina, Colombia, Venezuela, Bolivia, Ecuador and Trinidad & Tobago, as well as multi-domain critical communications broadband networks such as MRC’s (Mobile Radio Center) LTE-based advanced MCA digital radio system in Japan, and secure MVNO platforms in Mexico, Belgium, the Netherlands, Slovenia, Estonia and several other countries.
Even though critical public safety-related 5G NR capabilities defined in the 3GPP’s Release 17 specifications are yet to be commercialized, public safety agencies have already begun experimenting with 5G for applications that can benefit from the technology’s high-bandwidth and low-latency characteristics. For example, the Lishui Municipal Emergency Management Bureau is using private 5G slicing over China Mobile’s network, portable cell sites and rapidly deployable communications vehicles as part of a disaster management and visualization system. In neighboring Taiwan, the Hsinchu City Fire Department is using an emergency response vehicle that can be rapidly deployed to disaster zones to establish high-bandwidth, low-latency emergency communications by means of a satellite-backhauled private 5G network based on Open RAN standards.

In addition, first responder agencies in Germany, Japan and several other markets are beginning to utilize mid-band and mmWave (Millimeter Wave) spectrum available for local area licensing to deploy portable and small-scale 5G NPNs (Non-Public Networks) to support applications such as UHD (Ultra-High Definition) video surveillance and control of unmanned firefighting vehicles, reconnaissance robots and drones. In the near future, we also expect to see rollouts of localized 5G NR systems for incident scene management and related use cases, potentially using up to 50 MHz of Band n79 spectrum in the 4.9 GHz frequency range (4,940-4,990 MHz), which has been designated for public safety use in multiple countries including but not limited to the United States, Canada, Australia, Malaysia and Qatar.

SNS Telecom & IT estimates that annual investments in public safety LTE and 5G infrastructure will reach nearly $1.6 Billion by the end of 2022, driven by both new build-outs and the expansion of existing dedicated, hybrid government-commercial and secure MVNO/MOCN networks. Complemented by a rapidly expanding ecosystem of public safety-grade LTE/5G devices, the market will further grow at a CAGR of approximately 13% between 2022 and 2025, eventually accounting for more than $2.3 Billion by the end of 2025. Despite the positive outlook, a number of significant challenges continue to plague the market. The most noticeable pain point is the lack of a D2D communications capability.

The ProSe (Proximity Services) chipset ecosystem has failed to materialize in the LTE era due to limited support from chipmakers and terminal OEMs. However, the 5G NR sidelink interface offers a clean slate opportunity to introduce direct mode, D2D communications for public safety broadband users, as well as coverage expansion in both on-network and off-network scenarios using UE-to-network and UE-to-UE relays respectively. Another barrier impeding the market is the non-availability of cost-optimized COTS (Commercial Off-the-Shelf) RAN equipment and terminals that support operation in certain frequency bands such as Band 68 (698-703 MHz / 753-758 MHz), which has been allocated for PPDR (Public Protection & Disaster Relief) broadband systems in multiple European countries.

The “Public Safety LTE & 5G Market: 2022 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the public safety LTE and 5G market, including the value chain, market drivers, barriers to uptake, enabling technologies, operational models, application scenarios, key trends, future roadmap, standardization, spectrum availability/allocation, regulatory landscape, case studies, ecosystem player profiles and strategies. The report also presents global and regional market size forecasts from 2022 till 2030, covering public safety LTE/5G infrastructure, terminal equipment, applications, systems integration and management solutions, as well as subscriptions and service revenue.
The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report, as well as a list and associated details of over 1,150 global public safety LTE/5G engagements – as of Q4’2022.

Topics Covered
The report covers the following topics:
- Introduction to public safety LTE and 5G
- Value chain and ecosystem structure
- Market drivers and challenges
- System architecture and key elements of public safety LTE and 5G networks
- Operational models for public safety LTE and 5G networks, including fully dedicated, shared core, hybrid government-commercial, secure MVNO/MOCN, commercial and sliced private networks
- PPPs (Public-Private Partnerships) and other common approaches to financing and delivering dedicated nationwide public safety broadband networks
- Enabling technologies and concepts, including 3GPP-defined MCX, HPUE, IOPS, 5G MBS, ProSe and sidelink for D2D communications, rapidly deployable LTE/5G systems, QPP (QoS, Priority & Preemption), network slicing, end-to-end security, high-precision positioning, ATG/A2G (Air-to-Ground), and satellite-based NTN (Non-Terrestrial Network) integration
- Analysis of public safety broadband application scenarios and use cases, ranging from mission-critical group communications and real-time video transmission to 5G era applications centered upon MCX services in high-density environments, massive-scale UHD video surveillance and analytics, AR/VR/MR (Augmented, Virtual & Mixed Reality), drones and robotics
- Key trends such as the growing prevalence of nationwide hybrid government-commercial broadband networks, production-grade deployments of 3GPP standards-compliant MCX services, LMR-based interim solutions for off-network communications, deployable LTE network assets for wildfire fighting and other disaster relief operations, and 5G NR-equipped portable networks supporting high-bandwidth, low-latency emergency communications.
- Future roadmap for the public safety LTE and 5G market
- Review of public safety LTE/5G engagements worldwide, including a detailed assessment of 15 nationwide public safety broadband projects and additional case studies of 50 dedicated, hybrid, secure MVNO/MOCN and commercial operator-supplied systems
- Spectrum availability, allocation and usage across the global, regional and national domains
- Standardization, regulatory and collaborative initiatives
- Profiles and strategies of 1,700 ecosystem players, including LTE/5G equipment suppliers and public safety-domain specialists
- Strategic recommendations for public safety and government agencies, LTE/5G infrastructure, device and chipset suppliers, LMR vendors, system integrators, and mobile operators
- Market analysis and forecasts from 2022 till 2030

Forecast Segmentation
Market forecasts are provided for each of the following submarkets and their subcategories:

Public Safety LTE & 5G Network Infrastructure
Submarkets
- RAN (Radio Access Network)
- Mobile Core
- Backhaul & Transport
Technology Generations
- LTE
- 5G NR
Mobility Categories
- Fixed Base Stations & Infrastructure
- Deployable Network Assets
Deployable Network Asset Form Factors
- NIB (Network-in-a-Box)
- Vehicular COWs (Cells-on-Wheels)
- Aerial Cell Sites
- Maritime Platforms
RAN Base Station (eNB/gNB) Cell Sizes
- Macrocells
- Small Cells
Backhaul & Transport Network Transmission Mediums
- Fiber & Wireline
- Microwave
- Satellite

Public Safety LTE & 5G Terminal Equipment
Technology Generations
- LTE
- 5G NR
Form Factors
- Smartphones & Handportable Terminals
- Mobile & Vehicular Routers
- Fixed CPEs (Customer Premises Equipment)
- Tablets & Notebook PCs
- Smart Wearables
- IoT Modules, Dongles & Others

Public Safety LTE & 5G Subscriptions/Service Revenue
Technology Generations
- LTE
- 5G NR
Network Types
- Dedicated & Hybrid Government-Commercial Networks
- Secure MVNO & MOCN Networks
- Sliced & Commercial Mobile Networks

Public Safety LTE & 5G Systems Integration & Management Solutions
Submarkets
- Network Integration & Testing
- Device Management & User Services
- Managed Services, Operations & Maintenance
- Cybersecurity

Public Safety Broadband Applications
Submarkets
- Mission-Critical Voice & Group Communications
- Real-Time Video Transmission
- Messaging, File Transfer & Presence Services
- Mobile Office & Field Applications
- Location Services & Mapping
- Situational Awareness
- Command & Control
- AR/VR/MR (Augmented, Virtual & Mixed Reality)

Regional Markets
- North America
- Asia Pacific
- Europe
- Middle East & Africa
- Latin & Central America

Key Questions Answered
The report provides answers to the following key questions:
- How big is the public safety LTE and 5G opportunity?
- What trends, drivers and challenges are influencing its growth?
- What will the market size be in 2025, and at what rate will it grow?
- Which submarkets and regions will see the highest percentage of growth?
- What are the operational models and application scenarios of LTE and 5G for first responders?
- What are the existing and candidate frequency bands for the operation of PPDR broadband systems?
- How can public safety stakeholders leverage excess spectrum capacity to ensure the economic viability of purpose-built LTE and 5G NR infrastructure?
- When will MCX, HPUE, IOPS, 5G MBS, 5G NR sidelink, NTN connectivity and other 3GPP-defined critical communications features be widely employed?
- What is the status of fully dedicated, hybrid government-commercial and secure MVNO/MOCN-based public safety broadband networks worldwide?
- When will FirstNet, Safe-Net, ESN, RRF, SIRDEE, VIRVE 2.0 and other nationwide public safety broadband networks replace existing digital LMR systems?
- What opportunities exist for commercial mobile operators and critical communications service providers?
- What are the future prospects of NIB (Network-in-a-Box), COW (Cell-on-Wheels), aerial cell sites and other rapidly deployable LTE and 5G NR-equipped network systems for incident command and emergency response needs?
- How will 5G enable advanced features such as MCX services in high-density environments, UE-to-network and UE-to-UE relaying for coverage expansion, satellite-assisted NR access, high-precision positioning, and network slicing-based dynamic QoS guarantees and isolation?
- Who are the key ecosystem players, and what are their strategies?
- What strategies should LTE/5G infrastructure suppliers, LMR vendors, system integrators and mobile operators adopt to remain competitive?

Key Findings
The report has the following key findings:
- SNS Telecom & IT estimates that annual investments in public safety LTE and 5G infrastructure will reach nearly $1.6 Billion by the end of 2022, driven by both new build-outs and the expansion of existing dedicated, hybrid government-commercial and secure MVNO/MOCN networks. Complemented by a rapidly expanding ecosystem of public safety-grade LTE/5G devices, the market will further grow at a CAGR of approximately 13% between 2022 and 2025, eventually accounting for more than $2.3 Billion by the end of 2025.
- In addition to the high-profile FirstNet, South Korea’s Safe-Net and Britain’s ESN nationwide public safety broadband projects, many additional national-level programs are making considerable headway in moving from field trials to wider scale deployments – most notably, France’s RRF, Spain’s SIRDEE mission-critical broadband network, Finland’s VIRVE 2.0 broadband service, Sweden’s Rakel G2 secure broadband system and Hungary’s EDR 2.0/3.0 broadband network.
- Other operational and planned deployments include but are not limited to the Halton-Peel region PSBN in Canada’s Ontario province, China’s city and district-wide Band 45 (1.4 GHz) LTE networks for police forces, Royal Thai Police’s Band 26 (800 MHz) LTE network, Qatar MOI (Ministry of Interior), ROP (Royal Oman Police) and Nedaa’s mission-critical LTE networks in the oil-rich GCC region, Brazil’s state-wide Band 28 (700 MHz) networks for both civil and military police agencies, Barbados’ Band 14 (700 MHz) LTE-based connectivity service platform, and Zambia’s 400 MHz broadband trunking system.
- Production-grade deployments of 3GPP standards-compliant MCX services – beginning with MCPTT – are continuing to accelerate over both commercial and public safety broadband networks. Early adopters range from Safe-Net, FirstNet and ESN to mobile operators such as Verizon, Southern Linc, Telus, SFR, KPN, Swisscom, Telia, Føroya Tele and STC (Saudi Telecom Company).
- Even though critical public safety-related 5G NR capabilities defined in the 3GPP’s Release 17 specifications are yet to be commercialized, public safety agencies have already begun experimenting with 5G for applications that can benefit from the technology’s high-bandwidth and low-latency characteristics. For example, the Lishui Municipal Emergency Management Bureau is using a 5G-enabled closed-loop system for integrated emergency visualization and natural disaster management.
- As 5G implementations become well-established in the 2020s, MCX services in high-density environments, real-time UHD video transmission through coordinated fleets of drones, 5G-connected autonomous police robots, smart ambulances, AR (Augmented Reality) firefighting helmets and other sophisticated public safety broadband applications will become a common sight.
- Over the last two years, COWs (Cells-on-Wheels), COLTs (Cells-on-Light Trucks) and other deployable LTE network assets have played a pivotal role in facilitating mission-critical communications, real-time transmission of video footage, and improved situational awareness for incident command and emergency response needs – for instance, the mobilization of FirstNet deployables during the wildfire seasons of 2021 and 2022 in the United States.
- 5G NR-equipped portable network systems are also beginning to emerge. For example, Taiwan’s Hsinchu City Fire Department is using an emergency response vehicle – which features a satellite-backhauled private 5G network based on Open RAN standards – to establish high-bandwidth, low-latency emergency communications in disaster zones. Between 2022 and 2025, SNS Telecom & IT expects cumulative spending on deployable assets for public safety broadband to exceed $700 Million.
- Although much of the public safety spectrum debate is centered around low-band frequencies in the sub-1 GHz range, a number of PPDR stakeholders have started eyeing up mmWave spectrum reservation to be able to support advanced use cases in the coming years. For example, the Hungarian Ministry of Interior has specifically requested access to a 200 MHz block of Band n258 (26 GHz) spectrum for future 5G applications.
- In addition, first responder agencies in Germany, Japan and several other markets are beginning to utilize mid-band and mmWave spectrum available for local area licensing to deploy portable and small-scale 5G NPNs (Non-Public Networks) to support applications such as UHD video surveillance and control of unmanned firefighting vehicles, reconnaissance robots and drones.
- In the near future, we also expect to see rollouts of localized 5G NR systems for incident scene management and related use cases, potentially using up to 50 MHz of Band n79 spectrum in the 4.9 GHz frequency range (4,940-4,990 MHz), which has been designated for public safety use in multiple countries including but not limited to the United States, Canada, Australia, Malaysia and Qatar.
- The ProSe chipset ecosystem has failed to materialize in the LTE era due to limited support from chipmakers and terminal OEMs. However, the 5G NR sidelink interface offers a clean slate opportunity to introduce direct mode, D2D communications for public safety broadband users, as well as coverage expansion in both on-network and off-network scenarios using UE-to-network and UE-to-UE relays respectively.
- Another barrier impeding the market is the non-availability of cost-optimized COTS RAN equipment and terminals that support operation in certain frequency bands such as Band 68 (698-703 MHz / 753-758 MHz), which has been allocated for PPDR broadband systems in multiple European countries.

Companies Mentioned
• Afghanistan
• Albania
• Algeria
• Andorra
• Angola
• Anguilla
• Antigua & Barbuda
• Argentina
• Armenia
• Aruba
• Australia
• Austria
• Azerbaijan
• Bahamas
• Bahrain
• Bangladesh
• Barbados
• Belarus
• Belgium
• Belize
• Benin
• Bermuda
• Bhutan
• Bolivia
• Bosnia Herzegovina
• Botswana
• Brazil
• British Virgin Islands
• Brunei
• Bulgaria
• Burkina Faso
• Burundi
• Cambodia
• Cameroon
• Canada
• Cape Verde
• Cayman Islands
• Central African Republic
• Chad
• Chile
• China
• Cocos Islands
• Colombia
• Comoros Islands
• Congo
• Cook Islands
• Costa Rica
• Côte d’Ivoire
• Croatia
• Cuba
• Cyprus
• Czech Republic
• Democratic Rep of Congo (ex-Zaire)
• Denmark
• Djibouti
• Dominica
• Dominican Republic
• East Timor
• Ecuador
• Egypt
• El Salvador
• Equatorial Guinea
• Eritrea
• Estonia
• Ethiopia
• Faroe Islands
• Federated States of Micronesia
• Fiji
• Finland
• France
• French Guiana
• French Polynesia (ex-Tahiti)
• French West Indies
• Gabon
• Gambia
• Georgia
• Germany
• Ghana
• Gibraltar
• Greece
• Greenland
• Grenada
• Guam
• Guatemala
• Guernsey
• Guinea Republic
• Guinea-Bissau
• Guyana
• Haiti
• Honduras
• Hong Kong
• Hungary
• Iceland
• India
• Indonesia
• Iran
• Iraq
• Ireland
• Isle of Man
• Israel
• Italy
• Jamaica
• Japan
• Jersey
• Jordan
• Kazakhstan
• Kenya
• Kirghizstan
• Kiribati
• Korea
• Kosovo
• Kuwait
• Laos
• Latvia
• Lebanon
• Lesotho
• Liberia
• Libya
• Liechtenstein
• Lithuania
• Luxembourg
• Macau
• Macedonia
• Madagascar
• Malawi
• Malaysia
• Maldives
• Mali
• Malta
• Marshall Islands
• Mauritania
• Mauritius
• Mayotte
• Mexico
• Moldova
• Monaco
• Mongolia
• Montenegro
• Montserrat
• Morocco
• Mozambique
• Myanmar
• Namibia
• Nepal
• Netherlands
• Netherlands Antilles
• New Caledonia
• New Zealand
• Nicaragua
• Niger
• Nigeria
• Niue
• North Korea
• Northern Marianas
• Norway
• Oman
• Pakistan
• Palau
• Palestine
• Panama
• Papua New Guinea
• Paraguay
• Peru
• Philippines
• Poland
• Portugal
• Puerto Rico
• Qatar
• Réunion
• Romania
• Russia
• Rwanda
• Samoa
• Samoa (American)
• Sao Tomé & Principe
• Saudi Arabia
• Senegal
• Serbia
• Seychelles
• Sierra Leone
• Singapore
• Slovak Republic
• Slovenia
• Solomon Islands
• Somalia
• South Africa
• Spain
• Sri Lanka
• St Kitts & Nevis
• St Lucia
• St Vincent & The Grenadines
• Sudan
• Suriname
• Swaziland
• Sweden
• Switzerland
• Syria
• Tajikistan
• Taiwan
• Tanzania
• Thailand
• Togo
• Tonga
• Trinidad & Tobago
• Tunisia
• Türkiye
• Turkmenistan
• Turks & Caicos Islands
• UAE
• Uganda
• UK
• Ukraine
• Uruguay
• US Virgin Islands
• USA
• Uzbekistan
• Vanuatu
• Venezuela
• Vietnam
• Yemen
• Zambia
• Zimbabwe

Get Industry Insights. Simply.

  • Latest reports & slideshows with insights from top research analysts
  • 150+ Million searchable statistics with tables, figures & datasets
  • More than 25,000 trusted sources
  • Single User License — provides access to the report by one individual.
  • Department License — allows you to share the report with up to 5 users
  • Site License — allows the report to be shared amongst all employees in a defined country
  • Corporate License — allows for complete access, globally.

ReportLinker may already be registered as a supplier with your company. If you want to Order by PO, check with us first and we'll let you know if we are a registered supplier and what the vendor number is. Otherwise, we'll provide you with the necessary information to register ReportLinker as a vendor.

Grace helps you find the right report:
Testimonials

The research specialist advised us on the best content for our needs and provided a great report and follow-up, thanks very much we shall look at ReportLinker in the future.

Kate Merrick

Global Marketing Manager at
Eurotherm by Schneider Electric

We were impressed with the support that ReportLinker’s research specialists’ team provided. The report we purchased was useful and provided exactly what we want.

Category Manager at
Ikea

ReportLinker gave access to reliable and useful data while avoiding dispersing resources and spending too much time on unnecessary research.

Executive Director at
PwC Advisory

The customer service was fast, responsive, and 100% professional in all my dealings (...) If we have more research needs, I'll certainly prioritize working with ReportLinker!

Scott Griffith

Vice President Marketing at
Maurice Sporting Goods

The research specialist provided prompt, helpful instructions for accessing ReportLinker's product. He also followed up to make sure everything went smoothly and to ensure an easy transition to the next stage of my research

Jessica P Huffman

Research Associate at
American Transportation Research Institute

Excellent customer service. Very responsive and fast.

Director, Corporate Strategy at
Ingredion

I reached out to ReportLinker for a detailed market study on the Air Treatment industry. The quality of the report, the research specialist’s willingness to solve my queries exceeded my expectations. I would definitely recommend ReportLinker for in-depth industry information.

Mariana Mendoza

Global Platform Senior Manager at
Whirlpool Corporation

Thanks! I like what you've provided and will certainly come back if I need to do further research works.

Bee Hin Png

CEO at
LDR Pte Ltd

The research specialist advised us on the best content for our needs and provided a great report and follow-up, thanks very much we shall look at ReportLinker in the future.

Kate Merrick

Global Marketing Manager at
Eurotherm by Schneider Electric

FAQ
  • How we can help
    • I am not sure if the report I am interested in will fulfill my needs. Can you help me?
    • Yes, of course. You can call us at +33(0) 4 37 65 17 03 or drop us an email at [email protected] to let us know more about your requirements.
    • We buy reports often - can ReportLinker get me any benefits?
    • Yes. Set up a call with a Senior Research Advisor to learn more - [email protected] or +33(0) 4 37 65 17 03.
    • I have had negative experiences with market research reports before. How can you avoid this from happening again?
    • We advise all clients to read the TOC and Summary and list your questions so that we can get more insight for you before you make any purchase decision. A research advisor will accompany you so that you can compare samples and reports from different sources, and choose the study that is right for you.

  • Report Delivery
    • How and when I will receive my Report?
    • Most reports are delivered right away in a pdf format, while others are accessed via a secure link and access codes. Do note that sometimes reports are sent within a 12 hour period, depending on the time zones. However, you can contact us to escalate this. Should you need a hard copy, you can check if this option is offered for the particular report, and pay the related fees.
  • Payment conditions
    • What payment methods do you accept?
      1. Credit card : VISA, American Express, Mastercard, or
      2. You can download an invoice to pay by wire transfer, check, or via a Purchase Order from your company, or
      3. You can pay via a Check made out in US Dollars, Euros, or British Pounds for the full amount made payable to ReportLinker
    • What are ReportLinker’s Payment Terms?
    • All payments must normally be submitted within 30 days. However, you can let us know if you need extended time.
    • Are Taxes and duties included?
    • All companies based in France must pay a 20% tax per report. The same applies to all individuals based in the EU. All EU companies must supply their VAT number when purchasing to avoid this charge.
    • I’m not satisfied. Can I be refunded?
    • No. Once your order has been processed and the publisher has received a notification to send you the report, we cannot issue any refund or cancel any order. As these are not ‘traditional’ products that can be returned, reports that are dispatched are considered to be ‘consumed’.
  • User license
    • The license that you should acquire depends on the number of persons that need to access the report. This can range from Single User (only one person will have the right to read or access the report), or Department License (up to 5 persons), to Site License (a group of persons based in the same company location), or Corporate License (the entire company personnel based worldwide). However, as publishers have different terms and conditions, we can look into this for you.
Purchase Reports From Reputable Market Research Publishers

Global Fiber Optic Test Equipment Industry

  • $ 4950
  • October 2022
  • 246 pages

Abstract: What’s New for 2022? Global competitiveness and key competitor percentage market shares Market presence across multiple geographies - Strong/Active/Niche/Trivial Online interactive peer-to-pee ...

  • World
  • China
  • Broadband
  • Industry analysis

Global Connectors Industry $ 5450 October 2022


ref:plp2022

Reportlinker.com © Copyright 2023. All rights reserved.

ReportLinker simplifies how Analysts and Decision Makers get industry data for their business.

Make sure you don’t miss any news and follow us on