1. Market Research
  2. > Chemical
  3. > Petrochemical Market Trends

High-Performance Films: The U.S. Market

  • May 2014
  • 195 pages
  • BCC Research
Report ID: 958077

Summary

Table of Contents

Use this report to:

- Receive an overview of the U.S. market for high-performance films.
- Receive information on the overall high-performance film resin market estimate.
- Receive information on polyolefin-based high-performance films.
- Receive information on plastic film fabrication technology.

Highlights

- The U.S. high-performance films market reached $1.6 billion in 2013 and is expected to grow to $1.9 billion in 2018, with a compound annual growth rate (CAGR) of 4.5%.
- The polyester market reached $880 million in 2013 and is expected to grow to $1 billion in 2018, with a CAGR of 3.2%.
- The polyolefin based market reached $236 million in 2013 and is expected to grow to $285 million in 2018, with a CAGR of 3.8%.

INTRODUCTION

In the years since World War II, plastics, in their many forms, have become ubiquitous in developed nations, and are increasingly becoming common in the developing parts
of the world as well. The United States was until recently the world’s largest producer and user of polymer products. In recent years China, which has become the world’s
factory, surpassed North America in plastics production; however, the U.S. remains the largest user of plastics and plastic products. With abundant and cheap natural gas
feedstock from hydraulic fracturing (“fracking”) of tight gas shales, large petrochemical and polymer plants are again being built in the Ü.S. Synthetic polymers are made and used in many different forms, from synthetic fibers to extruded and molded products such as films and bottles, to foam mattresses. Often the same polymer can make products with entirely different properties and uses. Polyethylene terephthalate (PET) is a good example; it was first known and used as a synthetic fiber (Dacron and other brands). Later large use was developed for PET as a blow-molded bottle resin for soft drinks and other beverages, and also as a performance film for photographic film and magnetic media.

In this BCC Research report update by a different author, a Ph.D. chemical engineer who did an earlier BCC Research update several years ago, we study one versatile group of polymer products, high-performance plastic films. The noun film is defined in the American Heritage Dictionary as follows: 1. A thin skin or membrane. 2. A thin, opaque, abnormal coating on the cornea of the eye. 3. A thin covering or coating: a film of dust on the piano. 4. A thin, flexible, transparent sheet, as of plastic, used in wrapping or packaging. 5.a. A thin sheet or strip of flexible material, such as a cellulose derivative or a thermoplastic resin, coated with a photosensitive emulsion and used to make
photographic negatives or transparencies. b. A thin sheet or strip of developed photographic negatives or transparencies. 6.a. A movie, especially one recorded on film. b. The presentation of such a work. c. A long, narrative movie. d. Movies collectively, especially when considered as an art form. It can be seen that “film” has several meanings as a noun and even more as a verb. The firms covered in this report are included in definitions 4, 5.a, and 5.b. Although this definition comes from the most recent edition of this dictionary, the inclusion of “cellulose derivative” is now virtually obsolete since cellulose has long been replaced by synthetic polymers.

There is a difference between film and sheet, with films the thinner form. Plastic extrusions have usually been considered to be films up to about 0.25 mm, equivalent to 10 mils or 0.001 inch. Above this thickness a “film” of most materials usually becomes a “sheet.” However, as film technology has improved the flexibility of films, some markets define films slightly differently. Now thicknesses up to 0.40 inches (40 mils) may be defined as film by some engineers. Thus, these differential points between film and sheet are not absolute, and engineers can define films in different ways. As discussed in this report, while some greater thicknesses are now considered film instead of sheet, minimum film thicknesses are also trending thinner toward micro thicknesses as new technologies emerge. Many high-temperature films are in the range of 0.001 inches to 0.010 inches (10 to 100 mils). At these thicknesses, a little film resin can go a long way. A note on thickness units: in film technology, both English and metric units are
commonly used. In addition, in the U.S. film thickness is commonly expressed in gauge. In film technology gauge is a measurement of film thickness, where one gauge unity
equals 0.01 mil or about 0.25 micrometer or micron. Perhaps the easiest way to remember the relationship between these units is that 100-gauge film is 1 mil or 25
microns thick. In this report, film gauge will be referred to in the manner that is the standard in the industry under discussion.

High-performance thermoplastic (TP) films, the subject of this study, are playing an increasingly important role as engineers design products in increasingly demanding
environments and demand higher performance from the products they use. Historically, the most important applications for these films were for photographic and reprographic applications, both of which are disappearing from use as digital formats take over these businesses. Fortunately, new applications are constantly being developed to replace those lost to technology. Today, these films may make possible safer and lighter packaging, economic electric vehicles, better liquid crystal displays (LCDs) and the growth of an economically practical photovoltaic (PV) solar power industry. Major polymer and film producing companies are important technology drivers and
invest significant capital in R&D to improve their technologies. Innovations were driven initially by polymer chemistry, but increasingly, they are being driven by improved
fabrication and treatment of films. One example is the complex development of specialty polyolefin films as membrane separators for lithium-ion batteries.

STUDY GOALS AND OBJECTIVES

Goals and objectives of this study include the following:
- Identifying trends affecting high-performance polymer films and their major end-use application markets. For example, the photovoltaic market is one of the fastest-growing markets for high-performance film. Each of the major polymer films or film families is discussed and analyzed in detail. They include polyesters, polyolefin-based film resins, polyamides (nylons), polycarbonates, bioplastics, fluoropolymers, PMMA-type acrylics and polyimides. Newer high-performance film
resins studied include cyclic olefin copolymers (COCs), polyethylene naphthalate (PEN), liquid crystal polymers (LCPs), polysulfones and polyetherimides.
- Reviewing, analyzing and forecasting specific end markets for high-performance films by material types, with sections devoted to each type of high-performance film resin.
This includes both the major resin types and several smaller-volume film materials for which markets were estimated.
- Analyzing and forecasting market developments from the viewpoint of major applications for high-performance films. These include packaging, electrical/electronic,
automotive, release films and photographic/reprographic films.
- Analyzing how structural issues affect the high-performance plastic films industry, such as the roles of film fabricators, converters and distributors; product differentiation and substitution; marketing and pricing; and international aspects of the business.
- Profiling many of the most important suppliers to the high-performance plastic films industry. These include suppliers of plastic resins (many of whom also fabricate films), equipment producers, and specific film converters and distributors.

REASONS FOR DOING THE STUDY

High-performance plastic films have become a large and important niche market in the much larger overall plastic films industry. High-performance films are specialty
products that sell at premium prices because they do jobs that commodity films cannot do. Their use is driven by the specific applications for which they are targeted.
Although the volumes of high-performance films are small when compared to those of commodity films, the dollar value of this market is disproportionately high.
High-performance films, since they are specialty items, command higher prices, higher than commodity films and often several times as high. Markets for high-performance films offer opportunities to create value and move discussions to topics beyond purchase price. Technology advances should help drive technology developments in major areas, including the largest end-use market in packaging. New and better barrier film structures with high-performance films allow longer shelf life and better appearance.

Developments using these films should have some significant effects on our economy and help provide the ability to solve some current problems such as climate change,
where improved performance in applications such as solar cells and fuel cells can help attack global warming, one of the most serious environmental concerns. Similar work is going on in the automotive arena. The ability of engineers to meet design goals for products such as solar cells and/or batteries that power cars will in some major parts depend on development of high-quality performance films. High-performance markets increasingly are becoming those where the major chemical companies want to place their future. This business is also a global one, with many foreign-owned firms active in the U.S. market. Industry leaders have worldwide marketing and manufacturing facilities, often in joint ventures with local companies. The rise of China as a manufacturing behemoth has led to formation of many Chinese-foreign joint ventures.

BCC Research has continually updated this study to provide an up-to-date reference for those interested in and/or involved in these products and their use.

CONTRIBUTION OF THE STUDY AND INTENDED AUDIENCE

Because of the size and diversity of the materials and products used in high-performance plastic films, this report should be of interest to a wide group of organizations and individuals. This includes people who are involved in the development, design, manufacture, sale and use of these films, as well as government officials and the general public. This report will be of value to technical and business personnel in the following areas, among others:

- Personnel in end-user companies in a wide range of industries from food packaging to aerospace to photovoltaics. The focus of this report is on the interests of specifying
engineers and procurement commodity managers.
- Marketing and management personnel in companies that produce, market and sell high-performance plastic films.
- Companies involved in the design and construction of process plants that manufacture both the basic film resins and high-performance plastic films themselves.
- Companies that supply, or want to supply, equipment and services to high-performance plastic films companies.
- Financial institutions that supply money for such facilities and systems, including banks, merchant bankers, venture capitalists and others.
- Investors in both equity and fixed-income markets. The future of the specialty film business very much depends on the values of the publicly traded stocks of companies
such as 3M and DuPont.
- Personnel in government at many levels, ranging from federal to state and local authorities, many of whom are involved in trying to ensure public health and safety.
The report also will be of interest to military scientists studying new packaging and equipment.

SCOPE AND FORMAT

High-performance films canbe defined in any of several ways: by volume, price, performance, end-use markets, resin types, or a combination of two or more of these
characteristics. For this study, high-performance films are defined as thin-gauge, mostly extruded or solution-cast polymer sheets that generally meet at least one of the following criteria: pricing above commodity film levels, continuous-use temperature above commodity plastics, and end-uses requiring technical capability and thickness at or below 30 mils. These are films that are used primarily for their performance characteristics, not because of their price. Emphasis is on those markets and products where opportunities are the greatest.

Therefore, the distinguishing characteristics of high-performance films are as follows:
- Relatively expensive.
- Thin gauge (compared to sheet).
- Possess special performance characteristics.
- Significant applications other than in packaging. High-performance films generally are fabricated (or converted) in relatively small volumes (at least compared to commodity films). Much of their value is created after the film is extruded.
The focal point is on high-performance resins and their chemistries, including the
following:
- Polyesters, primarily PET. We use PET interchangeably with “polyester” throughout this report.
- Polyolefin-based specialty film resins.
- Nylons (more properly and chemically called polyamides).
- Polycarbonates (PCs).
- Bioplastics, a newer group of plastics.
- Fluoropolymers.
- Acrylic films based on PMMA chemistry.
- Polyimides (PIs).
- Cyclic olefin copolymers (COCs).
- Polyethylene naphthalate (PEN).
- Liquid crystal polymers (LCPs).
- Polysulfones.
- Polyetherimides.

We also introduce some newer film resins whose markets at present are too small to measure with any precision. These include polyketones, benzocyclobutenes and
polyacetals. Basic polyolefins, such as polyethylene (PE) and polypropylene (PP), are not included in our scope since they are true commodities used in commodity film applications like grocery and garbage bags. Also excluded are other commodity resins like polyvinyl chloride (PVC) and polystyrene. Specialty polyolefin-based films are included, primarily and particularly when multilayer construction is involved. These specialty films are ethylene vinyl alcohol (EVOH), ionomers, polyvinylidene chloride (PVdC), polyvinyl alcohol (PVOH) and polymethyl pentene (PMP).

- Fluoropolymer films are an important of this report. They include the following:
- Polytetrafluoroethylene (PTFE).
- Polyvinyl fluoride (PVF).
- Fluorinated ethylene-propylene (FEP).
- Polychlorotrifluoroethylene (PCTFE).
- Polyvinylidene fluoride (PVdF).
- Perfluoroalkoxy (PFA).
- Ethylene tetrafluoroethylene (ETFE).
- Ethylene chlorotrifluoroethylene (ECTFE).
The geographic scope of this report is the U.S. market. We include some international discussion, for example of foreign-owned firms that are active in these markets.
Our market estimates are by resin volumes in millions of pounds and we round them to the nearest million pounds. We round to millions since with so many products and
applications, many of which are similar and can overlap, market estimates are by nature just that, estimates and not precise beyond millions of pounds, if that. Many
applications markets for particular films are small, less than a million pounds, but our precision here is not greater than for larger numbers, and we round up to 1 million
those estimated volumes greater than a half-million. Also, compound annual growth rates (CAGRs) for table entries with small volumes may not agree exactly with the
2013 and 2018 volumes; this is again caused by rounding.

METHODOLOGY AND INFORMATION SOURCES

Both primary and secondary research sources were used in preparing this study. Extensive searches were made of the literature and the Internet, including leading
trade journals, technical papers, company literature, government information and pertinent trade associations. Much product and market information was obtained from
the principals involved in the industry. The information in our company profiles was obtained primarily from the companies themselves, especially the larger publicly
owned firms. Other sources included directories, articles and Internet sites.

Get Industry Insights. Simply.

  • Latest reports & slideshows with insights from top research analysts
  • 60 Million searchable statistics with tables, figures & datasets
  • More than 25,000 trusted sources
  • Single User License — provides access to the report by one individual.
  • Department License — allows you to share the report with up to 5 users
  • Site License — allows the report to be shared amongst all employees in a defined country
  • Corporate License — allows for complete access, globally.

Amrita helps you find the right report:

Testimonials

The research specialist advised us on the best content for our needs and provided a great report and follow-up, thanks very much we shall look at ReportLinker in the future.

Kate Merrick

Global Marketing Manager at
Eurotherm by Schneider Electric

We were impressed with the support that ReportLinker’s research specialists’ team provided. The report we purchased was useful and provided exactly what we want.

Category Manager at
Ikea

ReportLinker gave access to reliable and useful data while avoiding dispersing resources and spending too much time on unnecessary research.

Executive Director at
PwC Advisory

The customer service was fast, responsive, and 100% professional in all my dealings (...) If we have more research needs, I'll certainly prioritize working with ReportLinker!

Scott Griffith

Vice President Marketing at
Maurice Sporting Goods

The research specialist provided prompt, helpful instructions for accessing ReportLinker's product. He also followed up to make sure everything went smoothly and to ensure an easy transition to the next stage of my research

Jessica P Huffman

Research Associate at
American Transportation Research Institute

Excellent customer service. Very responsive and fast.

Director, Corporate Strategy at
Ingredion

I reached out to ReportLinker for a detailed market study on the Air Treatment industry. The quality of the report, the research specialist’s willingness to solve my queries exceeded my expectations. I would definitely recommend ReportLinker for in-depth industry information.

Mariana Mendoza

Global Platform Senior Manager at
Whirlpool Corporation

Thanks! I like what you've provided and will certainly come back if I need to do further research works.

Bee Hin Png

CEO at
LDR Pte Ltd

The research specialist advised us on the best content for our needs and provided a great report and follow-up, thanks very much we shall look at ReportLinker in the future.

Kate Merrick

Global Marketing Manager at
Eurotherm by Schneider Electric

Purchase Reports From Reputable Market Research Publishers

Not Cellular/Reinforced Plastic Sheet, Plate and Film Markets in the World to 2021 - Market Size, Development, and Forecasts

  • $ 26321
  • Industry report
  • July 2017
  • by Global Research & Data Services

The report package Not Cellular/Reinforced Plastic Sheet, Plate and Film Markets in the World to 2021 - Market Size, Development, and Forecasts offers the most up-to-date industry data on the actual market ...

Plastic Pipe, Tube and Hose Markets in the World to 2021 - Market Size, Development, and Forecasts

  • $ 26321
  • Industry report
  • July 2017
  • by Global Research & Data Services

The report package Plastic Pipe, Tube and Hose Markets in the World to 2021 - Market Size, Development, and Forecasts offers the most up-to-date industry data on the actual market situation, and future ...

Rigid Plastic Pipe, Tube and Hose Markets in the World to 2021 - Market Size, Development, and Forecasts

  • $ 26321
  • Industry report
  • July 2017
  • by Global Research & Data Services

The report package Rigid Plastic Pipe, Tube and Hose Markets in the World to 2021 - Market Size, Development, and Forecasts offers the most up-to-date industry data on the actual market situation, and ...


ref:plp2014

Reportlinker.com © Copyright 2017. All rights reserved.

ReportLinker simplifies how Analysts and Decision Makers get industry data for their business.